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Can we generate high-quality data for
contact-rich manipulation with trajectory optimization?

INTRODUCTION HIGH-LEVEL APPROACH

Trajectory optimization for contact-rich manipulation tasks is hard even for simple
problems. Consider non-prehensile manipulation in the plane (pictured above):

1. Hybrid system: |
. Discrete: where to make contact? . Build a Graph-of-Convex-Sets (GCS), where each vertex corresponds to

. Continuous: what continuous motion in each mode? planning within a fixed contact mode.

2. Underactuated system: . Approximately solve the Shortest-Path-Problem (SPP) in the GCS as a

3. Collision-free planning (when contact is not intended)

Approximate planning in a fixed contact mode (nonconvex) with a convex
Semidefinite Programming (SDP) relaxation.
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Global: A few percent from global optimality.

Solve times and optimality gap

. Reliable: 100% success rate (on tested

Slider | SDP solve time Rounding time Optimality gap problem instances).
Box 7.05s (6.87s) 0.05s (0.05s) 8.33% (5.39%)

Tee 83.61s (80.12s) | 0.36s (0.014s) 10.41% (7.47%) . Efficient: Scales polynomially (in planning
Numbers are mean values, with median values in parentheses. horizon and object geometry complexity).
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