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INTRODUCTION

Trajectory optimization for contact-rich manipulation tasks is hard even for simple 
problems. Consider non-prehensile manipulation in the plane (pictured above):
1.   Hybrid system:

• Discrete: where to make contact?
• Continuous: what continuous motion in each mode?

2. Underactuated system:
• Object can only move when pushed, and force must lie within friction cone.

3. Collision-free planning (when contact is not intended)

HIGH-LEVEL APPROACH

1. Approximate planning in a fixed contact mode (nonconvex) with a convex 
Semidefinite Programming (SDP) relaxation.

2. Build a Graph-of-Convex-Sets (GCS), where each vertex corresponds to 
planning within a fixed contact mode.

3. Approximately solve the Shortest-Path-Problem (SPP) in the GCS as a 
(convex) SDP, and retrieve a feasible solution with a quick rounding step.

We present a method that is...
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(Empirically) a few 
percent from global 
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Reliable
(Empirically) works 
100% of the time

E�cient
Scales polynomially, 
not exponentially
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We build a Graph of Convex 
Sets (GCS), with one vertex 
per contact mode.
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A vertex = Semidefinite 
relaxation of motion planning 
in a (fixed) contact mode

Step 2: Planning across 
contact modes

Step 1: Convex relaxation 
of nonconvex contact 
dynamics

Example trajectory

1. Global: A few percent from global optimality.

2. Reliable: 100% success rate (on tested 

problem instances).

3. E�cient: Scales polynomially (in planning 

horizon and object geometry complexity).
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Quasi-static contact 
dynamics are nonconvex 
when simultaneously 
optimizing over poses, 
contact locations and 
contact forces.

Quadratically Constrained 
Quadratic Program (Nonconvex) 

We formulate the nonconvex 
planning problem as a QCQP, 
which we relax into a 
first-order SDP relaxation, 
adding tightening constraints 
to improve the relaxation. 

Semidefinite Relaxation (Convex) 

The result is a tight convex 
approximation of the contact 
dynamics.

Relaxation

Exact when

Step 3: Solving the 
SPP in the GCS

Finally, we solve the 
Shortest Path Problem 
(SPP) in the GCS.

This is a Mixed-Integer 
Convex Program (MICP) 
with a strong convex 
relaxation.

We solve the relaxed 
problem (a convex SDP) 
and (quicky) round to a 
feasible solution.

Solve times and optimality gap

Numbers are mean values, with median values in parentheses.


