

Towards Tight Convex Relaxations for Contact-Rich Manipulation

Bernhard Paus Graesdal¹

with Russ Tedrake¹, Pablo A. Parrilo¹, Shao Yuan Chew Chia², Tobia Marcucci¹, Alexandre Amice¹, Savva Morozov¹

¹Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA ²Department of Computer Science, Harvard University, Cambridge MA, USA.

Can we generate high-quality data for contact-rich manipulation with trajectory optimization?

HIGH-LEVEI APPROACH

Trajectory optimization for contact-rich manipulation tasks is hard even for simple problems. Consider non-prehensile manipulation in the plane (pictured above):

1. Hybrid system:

- Discrete: where to make contact?
- Continuous: what continuous motion in each mode?
- 2. Underactuated system:
- Object can only move when pushed, and force must lie within friction cone.
- 3. Collision-free planning (when contact is not intended)

- Approximate planning in a fixed contact mode (nonconvex) with a convex Semidefinite Programming (SDP) relaxation.
- Build a Graph-of-Convex-Sets (GCS), where each vertex corresponds to 2. planning within a fixed contact mode.
- Approximately solve the Shortest-Path-Problem (SPP) in the GCS as a З. (convex) SDP, and retrieve a feasible solution with a quick rounding step.

A vertex = Semidefinite

in a (fixed) contact mode

relaxation of motion planning

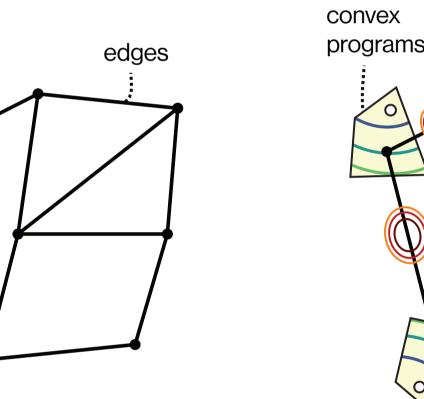
coupling costs

and constraints

Step 1: Convex relaxation of nonconvex contact dynamics			Step 2: Planning acı contact modes
	Quadratically Constrained Quadratic Program (Nonconvex)	Semidefinite Relaxation (Convex)	We build a Graph of (Sets (GCS), with one
		minimize $\operatorname{tr}(Q_0X)$	per contact mode.
p^c $(p, heta)\in\mathrm{SE}(2)$	minimize $x^{\intercal}Q_0x$	subject to $\operatorname{tr}(Q_i X) \ge 0$,	
	subject to $x^{T}Q_i x \ge 0, $	$\rightarrow \qquad AXe_1 \ge 0,$	edge vertices
	$Ax \ge 0$ Exact w	$AXA^{\intercal} \ge 0,$	
$ au=p^c imes f$	X = x		
Quasi-static contact dynamics are nonconvex when simultaneously optimizing over poses, contact locations and	We formulate the nonconvex	$\lfloor y \mid I \rfloor$	
	planning problem as a QCQP, which we relax into a first-order SDP relaxation,	The result is a tight convex approximation of the contact	
contact forces.	adding tightening constraints to improve the relaxation.	dynamics.	

cross

Convex ne vertex



Step 3: Solving the SPP in the GCS

Finally, we solve the Shortest Path Problem (SPP) in the GCS.

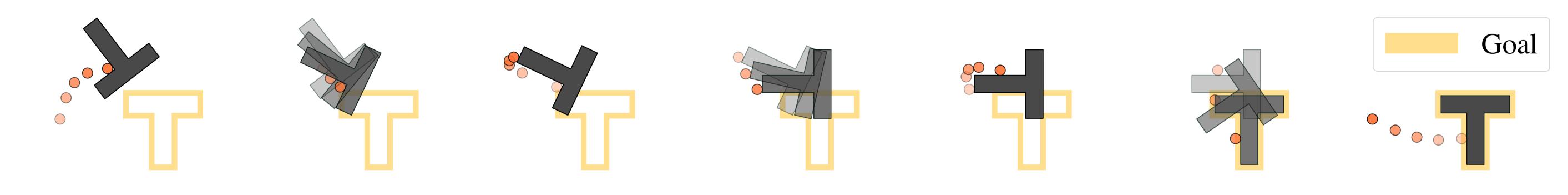
This is a Mixed-Integer Convex Program (MICP) with a strong convex relaxation.

We solve the relaxed problem (a convex SDP) and (quicky) round to a feasible solution.

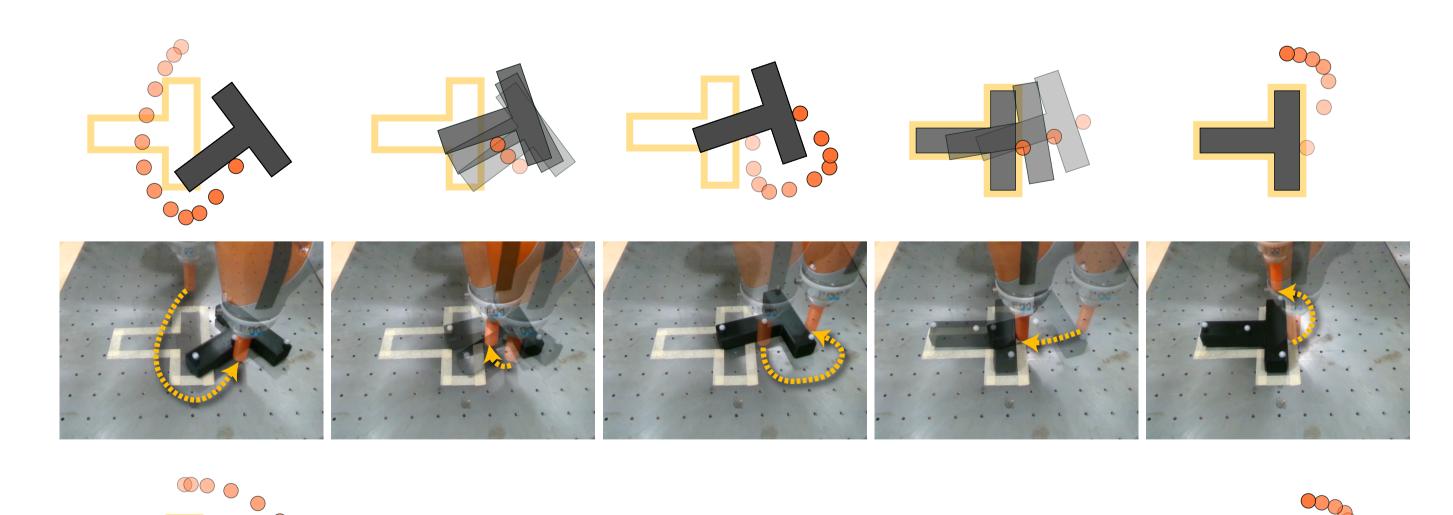
time

to improve the relaxation.

Example trajectory



Hardware demonstrations

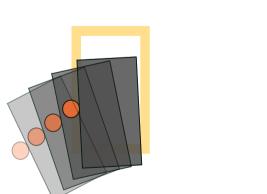


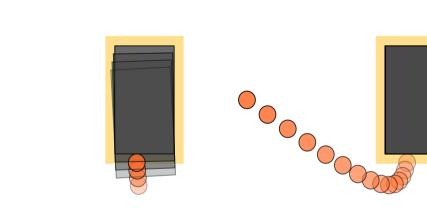
Baseline comparison

Success Rate Slider Our method Contact-implicit method Box 100% 58% 12% Tee 100%

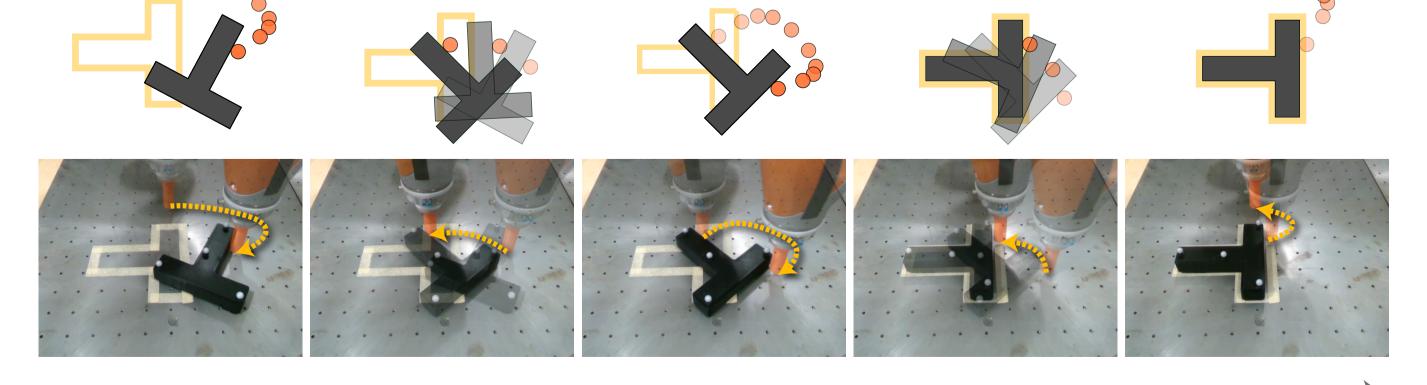
Our method:

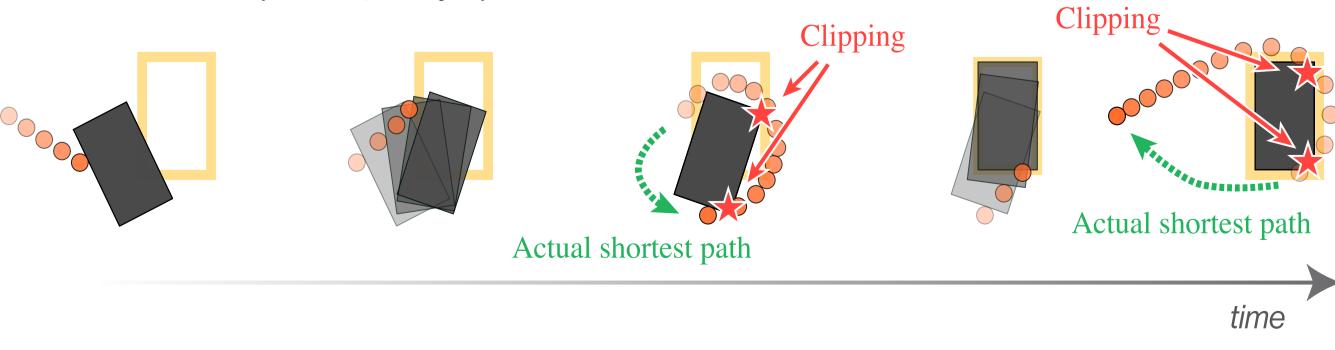
Goal





Baseline (Contact-Implicit Trajectory Optimization)





time

Solve times and optimality gap

Slider	SDP solve time	Rounding time	Optimality gap
Box	7.05s (6.87s)	0.05s (0.05s)	8.33% (5.39%)
Tee	83.61s (80.12s)	0.36s (0.014s)	10.41% (7.47%)

Numbers are mean values, with median values in parentheses.

KEY PROPERTIES

- 1. Global: A few percent from global optimality.
- 2. Reliable: 100% success rate (on tested problem instances).
- 3. *Efficient:* Scales polynomially (in planning horizon and object geometry complexity).

towards-tight-convex-relaxations